On the Blow-up of Solutions to the Integrable Modified Camassa–holm Equation
نویسندگان
چکیده
We derive conditions on the initial data, including cases where the initial momentum density is not of one sign, that produce blow-up of the induced solution to the modified integrable Camassa-Holm equation with cubic nonlinearity. The blow-up conditions are formulated in terms of the initial momentum density and the average initial energy.
منابع مشابه
Oscillation-induced Blow-up to the Modified Camassa–holm Equation with Linear Dispersion
In this paper, we provide a blow-up mechanism to the modified Camassa-Holm equation with varying linear dispersion. We first consider the case when linear dispersion is absent and derive a finite-time blow-up result with an initial data having a region of mild oscillation. A key feature of the analysis is the development of the Burgers-type inequalities with focusing property on characteristics...
متن کاملOn Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method
The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...
متن کاملAn integrable semi-discretization of the Camassa-Holm equation and its determinant solution
Abstract. An integrable semi-discretization of the Camassa-Holm equation is presented. The keys of its construction are bilinear forms and determinant structure of solutions of the CH equation. Determinant formulas of N-soliton solutions of the continuous and semi-discrete Camassa-Holm equations are presented. Based on determinant formulas, we can generate multi-soliton, multi-cuspon and multi-...
متن کاملPersistence Property and Asymptotic Description for DGH Equation with Strong Dissipation
where the constants α2 and γ/c 0 are squares of length scales and the constant c 0 > 0 is the critical shallow water wave speed for undisturbed water at rest at spatial infinity. Since this equation is derived by Dullin, Gottwald, and Holm, in what follows, we call this new integrable shallow water equation (1) DGH equation. If α = 0, (1) becomes the well-known KdV equation, whose solutions are...
متن کاملOrbital Stability of Peakons for a Generalization of the Modified Camassa-holm Equation
The orbital stability of the peaked solitary-wave solutions for a generalization of the modified Camassa-Holm equation with both cubic and quadratic nonlinearities is investigated. The equation is a model of asymptotic shallow-water wave approximations to the incompressible Euler equations. It is also formally integrable in the sense of the existence of a Lax formulation and bi-Hamiltonian stru...
متن کامل